673/Phs. 22-23 / 52416

B.Sc. Semester-V Examination, 2022-23 PHYSICS [Honours]

Course ID: 52416 Course Code: SH/PHS/503/DSE-1

Course Title: Advanced Mathematical Physics OR

Classical Dynamics

Time: 2 Hours Full Marks: 40

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

(Advanced Mathematical Physics)

UNIT-I

- 1. Answer any **five** questions: $2 \times 5 = 10$
 - a) Show that any tensor of rank 2 can be expressed as the sum of a symmetric and anti-symmetric tensors of rank 2.
 - b) Define symmetric and anti-symmetric tensor.
 - c) Define cyclic group.
 - d) If A_r^{pq} and B_r^{pq} are tensors, prove that their sum and difference are also tensors.

- e) Prove that Kronecker delta is a mixed tensor of rank 2.
- f) If N is a normal subgroup of G, show that xN = Nx for all $x \in G$.
- g) Let G be an abelian group. Prove that the subset $H = \{g \in G : g^2 = e \ (identity \ element)\}$ forms a subgroup of G.
- h) Define Riemannian space.

UNIT-II

- 2. Answer any **four** questions: $5 \times 4 = 20$
 - a) Prove Bayes' theorem.
 - b) A covariant tensor has components xy, $2y-z^2$, xz in rectangular coordinates. Find its covariant components in spherical coordinates.
 - c) Show that in a Cartesian coordinate system the contravariant and covariant components of a vector are identical.
 - d) Determine the metric tensor in (i) cylindrical and (ii) spherical coordinates.

e) Two dice are rolled.

A='sum of two dice equals 3'

B='sum of two dice equals 7'

C='at least one of the dice shows a 1'

- i) What is (A|C)?
- ii) What is (B|C)?
- iii) Are A and C independent? 2+2+1
- f) Define homomorphism and isomorphism of a group.

UNIT-III

3. Answer any **one** question:

- $10 \times 1 = 10$
- a) Express the Laplacian of ϕ , $\nabla^2 \phi$, in (i) cylindrical coordinates (ii) spherical coordinates. 5+5=10
- b) What is binomial distribution? Find the probability distribution function of binomial distribution. Hence, find Gaussian distribution with proper condition. 2+3+5=10

(Classical Dynamics)

UNIT-I

- 1. Answer any **five** of the following: $2 \times 5 = 10$
 - a) What do you mean by pseudo force?
 - b) What is Gyro-radius and Gyro-frequency?
 - c) What is canonical transformation? What is the condition for the transformation to be canonical?
 - d) Differentiate streamline motion and turbulent motion of fluid.
 - e) What are stable and unstable equilibrium? Explain with diagram.
 - f) Write down the Lagrangian of a particle, moving on the surface on the sphere.
 - g) What do you mean by degrees of freedom? Find out the degree of freedom of a tri-atomic molecule.
 - State D'Alembert's principle and write down its mathematical form.

UNIT-II

- 2. Answer any **four** of the following: $5 \times 4 = 20$
 - a) A bead slides without friction through a frictionless wire in the shape of a cycloid with equations $x = a(\theta \sin \theta)$, $y = a(1 + \cos \theta)$ where $0 \le \theta \le 2\pi$. Find (i) the Lagrangian function and (ii) the equation of motion.
 - b) Explain how a charged particle in an external magnetic field undergoes circular motion. 5
 - c) Explain the following statement— "The Navier-Stokes equations mathematically express conservation of momentum and conservation of mass for Newtonian fluids".

 5
 - d) Write down Eular-Lagrange equation. Show that the shortest path between two points in Euclidean space is basically a straight line. 1+4
 - e) Obtain the Lagrange's equation of motion for small oscillations of a system in the neighborhood of stable equilibrium.
 - f) The potential energy as a function of the force between two atoms in a diatomic molecule is given by: $U(x) = \frac{a}{x^{12}} \frac{b}{x^6}$, where, a and b are positive constants and x is the distance between the atoms. Find out the stable equilibrium for the system of two atoms.

(5)

[Turn Over]

UNIT-III

- 3. Answer any **one** of the following: $10 \times 1 = 10$
 - a) i) Show that the differential equation describing the motion of a particle in a central field can be written as:

$$\frac{mh^{2}}{2r^{4}}\left[\left(\frac{dr}{d\theta}\right)^{2}+r^{2}\right]-\int f(r) dr=E;$$

where symbols have their usual meanings.

- ii) While considering equation of motion for a particle under central force, show that $r^2\dot{\theta} = \text{constant}$.
- iii) Derive the Lagrangian of a particle, constrained to slide down (without rolling) through a friction-less inclined plane surface of inclination- θ . 6+2+2
- b) Prove that $x^2 + y^2 + z^2 c^2t^2$ remains invariant under Lorentz transformation in all frame of reference. Explain the phenomenon of length contraction. Write down the postulates of special theory of relativity. 5+3+2